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The Van Vleck formula is an approximate, semiclassicaI expression for the 
quantum propagator. It is the starting point for the derivation of the Gutzwiller 
trace formula, and through this, a variety of other expansions representing 
eigenvalues, wave functions, and matrix elements in terms of classical periodic 
orbits. These are currently among the best and most promising theoretical tools 
for understanding the asymptotic behavior of quantum systems whose classical 
analogs are chaotic. Nevertheless, there are currently several questions 
remaining about the meaning and validity of the Van Vleck formula, such as 
those involving its behavior for long times. This article surveys an important 
aspect of the Van Vleck formula, namely, the relationship between it and phase 
space geometry, as revealed by Maslov's theory of wave asymptotics. The 
geometrical constructions involved are developed with a minimum of mathe- 
matical formalism. 

KEY WORDS: Van Vleck formula; Maslov theory; WKB theory; semi- 
classical mechanics; quantum chaos; Gutzwiller trace formula. 

1. I N T R O D U C T I O N  

The Van Vleck formula  is a semiclassical approx imat ion  for the usual  
p ropaga tor  in q u a n t u m  mechanics,  

K(x",  t"; x', t ' ) =  (x" l  U(t", t ') I x ' )  O ( t " -  t') (1.1) 

where the singly pr imed variables (x', t ')  represent some initial posi t ion 
and  time, the doubly  pr imed variables (x", t") represent some final posi t ion 
and time, U(t", t') is the un i ta ry  time evolut ion operator  for some q u a n t u m  
system (possibly t ime-dependent) ,  and  O is the unit  step function. The 
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Van Vleck formula is most commonly applied to the nonrelativistic 
Schr6dinger equation for scalar particles, as we shall do here. 

The Van Vleck formula is the starting point for a sequence of deriva- 
tions, approximations, and intuitive leaps which take one from exact quan- 
tum expressions to a variety of results expressing energy eigenvalues and 
their correlations, wave functions, and matrix elements in terms of classical 
periodic orbits. The first stage in this process is the Gutzwiller trace for- 
mula, (1) which expresses the density of states of a quantum system as a sum 
over the periodic orbits of the corresponding classical system. Various 
resummation techniques can be applied to the Gutzwiller trace formula, 
yielding one of the principal bodies of theoretical methods available for the 
analysis of quantum systems whose classical analogs are chaotic. Con- 
siderable progress has been made along these lines in recent years, and new 
methods have appeared for understanding a variety of systems in atomic, 
molecular, and nuclear physics. (2) Many of these results are in a sense 
improvements on the Gutzwiller trace formula, having advantages in terms 
of their convergence properties. Nevertheless, these results all depend logi- 
cally on the Gutzwiller trace formula and, through it, on the Van Vleck 
formula, since direct methods of derivation are not known. Furthermore, 
there remain important questions concerning the Van Vleck formula itself, 
such as its long-time validityJ 3) Therefore a proper understanding of the 
Van Vleck formula is more important than ever. 

This article surveys an important aspect of this question, namely the 
relation between the Van Vleck formula and geometrical structures in the 
classical phase space. This is a subject developed in large measure by 
Maslov and his co-workers, (4) whose theories have been nicely reviewed in 
the context of time-independent and scattering problems by Detos. (5) 
Another clear introduction to this theory has been given by Percival. (6) In 
this article we will focus primarily on the Van Vteck formula and its deriva- 
tion, keeping in mind a primary application of this formula, the derivation 
of the Gutzwiller trace formula. The latter derivation is notorious for its 
difficulty, and this survey is intended in part to illuminate and remove part 
of this difficulty. The specific manner in which geometrical ideas can be 
applied to the Gutzwiller trace formula and to other trace formulas has 
been explored in considerably more detail in ref. 7. 

There exists a substantial body of mathematical literature on wave 
asymptotics, of which the books by Guillemin and Sternberg (8~ and 
Leray (9) are important examples. Much of this literature is, however, rather 
technical, and as a result it has been quite decoupled from and has had 
little impact on semiclassical studies in physical applications. There are 
even examples of important results known in the physical literature, such 
as the Gutzwiller trace formula itself, which apparently have been rederived 



Van Vleck Formula 9 

in the mathematical literature, with even today scarcely an acknowledg- 
ment of the parallel (and earlier) development. The books by Maslov and 
by Maslov and Fedoriuk (4) are relatively more accessible than the other 
mathematical references in this area, and pay particular attention to the 
Van Vleck formula. Although they are still rather technical, they are the 
primary references for this survey. 

In this article we will attempt to convey essential geometrical ideas in 
an intuitive and plausible way, without excessive mathematical formalism 
on rigorous proofs. The book by Arnold (m) is a standard reference on the 
background material for this article, and contains in addition considerable 
material on wave asymptotics in general and the Van Vleck formula in par- 
ticular. One of the main purpose of the geometrical approach to wave 
asymptotics is to understand properly the covariance of semiclassical 
mechanics under the canonical transformations of classical mechanics. This 
is a subject which is perhaps best known in the physical literature on 
account of the work of Miller, (H) which explores the self-consistency of 
semiclassical methods in different representations, and which has had con- 
siderable influence. Covariance of semiclassical mechanics under canonical 
transformations is of particular relevance to the Gutzwiller trace formula, 
in which transformations are performed (such as from the time representa- 
tion to the energy representation), and in which the final results (the trace 
formula) are expressed in terms of canonical invariants, after a derivation 
which proceeds through representation-dependent intermediaries. 

Nowadays it is popular to derive the Van Vleck formula as the semi- 
classical limit of the Feynman path integral for the propagator. ~ This 
approach is natural in view of the fundamental role played by path 
integrals in many areas of physics, and in view of the great physical appeal 
of path integrals and the physical intuition they provide. But Van Vleck's 
original derivation (~3t was based on a different approach, namely, multi- 
dimensional, time-dependent WKB or phase integral theory. The latter 
approach has a number of advantages over that based on the path integral, 
such as the fact that it is easily generalized to cover a wide class of wave 
equations (not just those having the standard kinetic-plus-potential form of 
quantum mechanics), and the fact that representation covariance is (with 
proper understanding) essentially built in. It is the WKB approach which 
we will follow in this survey. 

2. B A C K G R O U N D  ON T H E  P R O P A G A T O R  

In this section we present some background on the propagator, setting 
up the derivation of its semiclassical limit in terms of WKB theory. We do 
this by expressing the propagator as the solution of an initial value 
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problem in quantum mechanics, which, when subjected to a semiclassical 
approximation, leads to an initial value problem in time-dependent, multi- 
dimensional WKB theory. The purely quantum mechanical side of this 
picture is a standard subject in Green's function theory, (14) which we now 
summarize. 

The propagator can be defined as the solution of the inhomogeneous 
Schr6dinger equation, 

( H " - i h  ~ )  K(x", t"; x', t ' ) =  - i h  6(t"-t ' )  6(x"-  x') (2.1) 

subject to the condition K = 0  for t " <  t'. Here the double prime on H" 
indicates that the quantum operators in the Hamiltonian act on x", and 
that any explicit time dependence in the Hamiltonian is evaluated at t". 
For  the most part, we will not distinguish notationally between the one- 
dimensional and the multidimensional cases. For  example, the symbol x 
should be interpreted as an f-dimensional vector, where f is the number of 
degrees of freedom, and similarly for p, etc. Scalar products, where they 
occur, are usually obvious, as in p dx, which stands for Z Pi dxi. The 
distinction between x and q is that the former suggests rectangular 
coordinates, whereas the latter suggests generalized coordinates on phase 
space. 

Because the inhomogeneous term in Eq. (2.1) vanishes for t " r  t', the 
propagator satisfies the ordinary, homogeneous Schr6dinger equation in 
the double-primed variables for t " >  t' (and also for t " <  t', where K 
vanishes). Therefore the determination of K for t " >  t' can be viewed as an 
initial value problem, in which the initial conditions can be taken as  the 
value of K for small positive times, i.e., for t" = t' + e, with ~ --* 0 +. 

To find these initial conditions, we introduce the two-time unitary 
evolution operator U(t", t'), defined as the operator solution of 

OU(t", t') ih H(t") U(t", t') (2.2) 
~t" 

subject to the initial condition U = Identity at t" - -  t ' .  ( i s )  Then we can write 
K in terms of the x-space matrix elements of U as shown in Eq. (1.1), as 
follows by directly substituting Eq. (1.1) into Eq. (2.1), and noting that K 
does indeed vanish for t" < t'. If we now let t" approach t' from above, then 
Eq. (1.1) shows that 

lim K(x", t ' + ~ ; x ' ,  t ' )=6(x"-x ' )  (2.3) 
g ~ O  + 
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We thereby obtain a simple way of thinking about the propagator: for 
t">t',  K(x", t";x', t') is the solution O(x", t") of the time-dependent 
SchrSdinger equation, subject to the initial condition ~,(x", t " )=  6 (x" - x ' )  
at t" = t'. 

2.1. The Init ial  V a l u e  Prob lem in W K B  T h e o r y  

We now consider the initial value problem in WKB theory, in order 
to solve for K in the semiclassical approximation. We begin by considering 
time-dependent WKB theory from a general standpoint. 

Suppose we are given an initial wave function of the form 

~(x, t') = ~o(X) = Ao(x) exp[ ( i/h ) So(x)] (2.4) 

where for now we suppress the primes on x. The initial amplitude is Ao(x), 
assumed to be real and positive, and the initial action is So(x). This form 
should properly be regarded as the leading term of an asymptotic expan- 
sion in h, in which O(h) terms in ~k are neglected. Since the action turns out 
to be representable in terms of a line integral, we wilt say that a wave 
function such as in Eq. (2.4) has the "phase integral" or "WKB form." 

We will make the assumption that at a later time t " >  t' the wave 
function can again be represented in WKB form, 

~(x, t ' )= A(x, t")exp[ (i/h) S(x, t")] (2.5) 

This assumption may not be valid; as we will discuss more fully below, it 
turns out that the final wave function can be represented as shown in Eq. 
(2.5) only for sufficiently short elapsed times t " -  t', after which it must be 
replaced by a sum of terms of the WKB form. The breakdown of the single- 
term representation is due to the formation of caustics, and it occurs at 
times which are classical, i.e., of order h ~ For sufficiently longer times, the 
WKB approach presumably breaks down altogether. For some time now 
it has been assumed that this breakdown is due to the progressive convolu- 
tion of manifolds in phase space, (16) which ultimately reach a quantum 
scale. This assumption has lately been called into question, (3) and it is 
likely that a more searching analysis would reveal important new insights 
into the time limitations of WKB theory. Certainly of the two limita- 
t i ons - the  short-time limit on the single-term expression, and the longer- 
time limit on the multiterm expression--the former is more innocuous. We 
will return to the question of time limitations later; for the moment we will 
simply proceed with Eq. (2.5) as it stands. 

Our immediate problem is to solve for the final amplitude A(x, t") and 
action S(x, t"), given the initial values Ao(x ), So(x). We do this by 



12 Littlejohn 

substituting Eq. (2.5) into the (double-primed) time-dependent Schr6dinger 
equation, expanding in powers of h, and neglecting terms of order h and 
higher. At lowest order we find the time-dependent Hamilton-Jacobi 
equation for the action S, 

H (x, aS(x, t") ,, aS(x, t") 
ax , t ) +  -~,  = 0  (2.6) 

where the momentum dependence of the Hamiltonian has been replaced 
by p=aS/ax. This result is verified by standard calculations 115~ for 
Hamiltonians of the form 

H(x, p, t) =pZ/2m + V(x, t) (2.7) 

(in any number of degrees of freedom), but it can be justified as well for 
evolution operators which are quite general functions of (x, p, t) (so long 
as they have a classical limit). 

The result of the expansion at the next order in h is the so-called 
amplitude transport equation for A, which is conveniently expressed in 
terms of a quantity p, defined by 

p(x, t")= ]A(x, t")i 2 (2.8) 

As we shall see later, for small elapsed times, A is real and positive, just like 
its initial condition A0, and the absolute value signs are unnecessary. 
Because of the probabilistic interpretation of the wave function in Eq. (2.4), 
it is suggestive to interpret p as a kind of density of classical particles on 
configuration space. In terms of p, the equation of evolution for A is simply 
the continuity equation, 

ap(x, r') a 
~"  +~x [p(x, t")v(x, t")] = 0 (2.9) 

where in more than one dimension the x derivative is a divergence, and 
where the velocity field v is given by 

all(x, p, t") 
v(x, t") (2.10) ap 

with p set equal to OS(x, t")/Ox. Since the amplitude transport equation for 
p or A involves S [through the velocity field v(x, t")], it is necessary to 
solve the Hamilton-Jacobi equation first for S, and then to use this 
solution in the amplitude transport equation to solve for p or A. 

We will spend the next section preparing for the solution of the 
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Hamilton-Jacobi equation. This is a standard topic in most texts on classi- 
cal mechanics, although it is poorly explained in many of them. For  exam- 
ple, it is almost never mentioned that the existence of global solutions of 
the Hamilton-Jacobi equation depends critically on whether the classical 
motion is regular or chaotic. We will be especially interested in a geometri- 
cal interpretation of the solutions of the Hamilton-Jacobi equation, which 
is intimately connected with the concept of Lagrangian manifolds. This is 
an important concept, without which multidimensional WKB theory and 
semiclassical mechanics cannot properly be understood. We therefore turn 
now to a discussion of Lagrangian manifolds and the manner in which they 
emerge from WKB theory. Once this is completed, the solution of the 
Hamilton-Jacobi equation will be almost immediate. 

3. L A G R A N G I A N  M A N I F O L D S  A N D  T H E  H A M I L T O N - J A C O B !  
E Q U A T I O N  

Let us return to the initial action function So(x) and its associated 
momentum field, 

p= po(X) = OS~176 x) (3.1) 

which can be viewed as a vector field on the f-dimensional configuration 
space at the initial time t'. It is useful to think of this field as representing 
the initial momenta of a swarm of particles; as we shall see, the initial 
density of these particles should be interpreted as being po(x)= IAo(x)t 2. 
This initial momentum field is also associated with an initial velocity field, 

OH(x, p, t') 
Vo(X ) - (3.2) 0p 

with p set to OSo(x)/Ox. This swarm of particles and the associated vector 
fields constitute the classical or semiclassical interpretation of the initial 
action function in configuration space. 

When viewed in the 2f-dimensional phase space, the initial swarm of 
particles lies on an f-dimensional surface, since Eq. (3.1) constitutes f inde- 
pendent constraints on the 2f  variables (x, p). See Figs. 1 and 2, in which 
this surface, denoted Lo, is illustrated for one and two degrees of freedom. 
For  two degrees of freedom, some imagination must be used to visualize 
the 2-dimensional surface embedded in the 4-dimensional phase space. The 
surface Lo is the graph of the function p =po(X), i.e., the set of points in 
phase space of the form (x, po(x)). 

The f-dimensional surface created in this manner is not arbitrary, but 
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Fig. 1. The initial Lagranglan 
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> x 
X t 

manifold po(x)  = 8So/8X in one dimension is just a curve. 

rather satisfies certain differential constraints, due to the fact that the 
momentum field po(X) is the gradient of a scalar (namely So). That is, we 
have 

8po,(X) 8poj(x) (3.3) 
8xj Oxi 

for i, j =  1,...,f. We will call a momentum field satisfying Eq. (3.3) 
"curl-free." 

We will define a Lagrangian manifold momentarily, but it turns out 
that any f-dimensional surface created as the graph of a curl-free momen- 
tum field is, in fact, a Lagrangian manifold. The converse is not quite true; 
there exist Lagrangian manifolds for which p cannot be expressed as a 

Fig. 2. 
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The initial Lagrangian manifold p o ( x ) =  VSo(x ) in two degrees of freedom. Note that 
L 0 is 2-dimensional surface in a phase space of four dimensions. 
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function of x, or for which the derivatives in Eq. (3.3) diverge or are 
undefined. Because of these exceptional cases, we cannot take Eq. (3.3) as 
a definition of a Lagrangian manifold. 

The actual definition of a Lagrangian manifold involves the symplectic 
form, denoted co, which is an antisymmetric, bilinear operator acting on 
vectors in phase space. (1~ If we let 6z~ = (c5ql , @1) and 6z2 = (6q2, @2) be 
two small displacements in phase space, then the action of the symplectic 
form on them is defined by 

co(6z~, 6z2) = 6p~ . 6q2 - @ 2  ~ql (3.4) 

or, in matrix form, 

(D(~Z 1 , 6Z2) = 0 z 1 . J  l . ~ z  2 (3.5) 

where J is the unit symplectic matrix, 

The matrix J is antisymmetric and orthogonal, so 3 ' = , I - ~ =  - J .  Note 
that only two vectors are involved in the definition of the symplectic form, 
no matter how many dimensions in the 15hase space. In one degree of 
freedom, the symplectic form measures the area of the parallelogram 
spanned by the vectors; in higher degrees of freedom, the symplectic form 
may be used to define phase space area for 2-dimensional subspaces. The 
symplectic form is invariant under canonical transformations, in the sense 
that the value of the right side of Eq. (3.4) is independent of the canonical 
coordinates used to compute it. Indeed, perhaps the best definition of a 
canonical transformation is as a transformation which has this property for 
all vectors ~Zl, 6z2. 

We now define a Lagrangian manifold as a f-dimensional surface L in 
the 2f-dimensional phase space such that at all points (x, p) on L and for 
all vectors (5zl, 6z 2 tangent to L at (x, p), we have (Fig. 3) 

co(6z~, 6z2) = 0 (3.7) 

That is, a Lagrangian manifold is a null surface of dimensionality f ,  in the 
sense of the phase space geometry engendered by the symplectic form o9. 

Let us examine some of the consequences of this definition. To begin, 
in one degree of freedom, a Lagrangian manifold must be a 1-dimensional 
surface, i.e., a curve, in the 2-dimensional phase plane. (See Fig. 4.) 
Furthermore, since all tangent vectors 6z = (fix, 61)) at a given point on any 
curve in a plane are linearly dependent, the antisymmetry of the symplectic 
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Fig. 3. An f -d imensional  surface L in phase space is a Lagrangian manifold if the symplectic 
area spanned by any two tangent vectors fizz, Oz 2 at any point of the surface is zero. It is a 
null surface in the symplectic geometry. 

form guarantees that e)(3zl, c5z2) always vanishes. Therefore all curves 
in the 2-dimensional phase plane are Lagrangian manifolds, i.e., the 
Lagrangian condition imposes no constraints at all in one degree of 
freedom. The concept of a Lagrangian manifold is really only needed for 
multidimensional problems. 

Another consequence of the definition is that the surfaces x = const or 
p = const, in any number of degrees of freedom, are Lagrangian manifolds, 
because one or the other of the increments 6q, 6p in Eq. (3.4) is zero. In 
particular, both configuration space and momentum space, conceived of as 
subsets of phase space, are Lagrangian manifolds. These statements 
generalize to any set of canonical coordinates, because the value of the 

P 

~z 1 

L 

::P x 

Fig. 4. In one degree of freedom, all tangent vectors 6z at a point of a curve are linearly 
dependent, so all curves in the phase plane are Lagrangian. 
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symplectic form of Eq. (3.4) is invariant under canonical transformations. 
Conversely, one can show that every Lagrangian manifold is a constant-q 
or constant-p surface in some set of canonical coordinates. It is suggestive 
to think of a Lagrangian manifold as a surface in phase space which is 
completely "q-ish;" such a surface is also completely "p-ish," because q and 
p can be interchanged by the canonical transformation P = q, Q = - p .  The 
point is that a Lagrangian manifold does not, in a sense, have any cross 
q-p behavior. 

A third consequence of the definition is that the graph of any curl-free 
momentum field, p =p(x),  is, in fact, a Lagrangian manifold. To see this, 
note that any vector 6z = (6x, 6p) tangent to the surface p =p(x)  satisfies 
a constraint connecting its x and p components, namely, 

- - , ~ x  i (3.8) ,~p, = 5" Op, 
"7 ,Oxj 

Substituting this into Eq. (3.4) and using the symmetry of Opi/Ox j, we 
easily find that co(6zl, 6z2) = 0. 

One of the conditions on a Lagrangian manifold is that it should have 
dimensionality f ,  one half of the dimensionality of the phase space. But null 
surfaces of other dimensionalities also exist, i.e., surfaces whose tangent 
vectors satisfy Eq. (3.7). Such surfaces are called isotropic (the terminology 
bears no relation to the usual meaning of this word in physics), and are 
also sometimes important in classical and semiclassical mechanics. There is 
a limit, however, on the dimensionality of such surfaces: it cannot exceed 
f ,  because it turns out that the maximum number of linearly independent 
vectors which can be pairwise annihilated by the symplectic form is f .  

More precisely, if we are given f linearly independent phase space 
vectors X1 ..... X s (the subscripts distinguish the vectors, and are not com- 
ponents) such that o)(X~, Xz)=0 for k, l =  1,..., f ,  and another vector Y 
such that ~( Y, Xk) = 0 for k = 1,..., f ,  then Y must be a linear combination 
of the X's. To prove this, consider the two sets o f f  vectors (X1,..., X s) and 
(3X1 ..... ,IX1), where ,1 is given by Eq. (3.6). The first set is linearly inde- 
pendent by hypothesis, and the second set is linearly independent because 
3 is nonsingular. Further, every vector of the first set is perpendicular to 
every vector of the second, because co(Xk, Xt) = - Xk .  (3Xz) = 0. Therefore 
the two sets span perpendicular subspaces of dimensionalityf, and together 
span the 2f-dimensional space of all possible tangent vectors in phase 
space. If now co(Y, Xk)= 0, then Y is perpendicular to all the JXk, and 
must therefore lie in the subspace spanned by the Xk. This proves the 
theorem. As a result of this theorem, we can characterize a Lagrangian 
manifold as an isotropic manifold of maximum dimensionality (namely f ) .  

822/68/1-2-2 
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3.1. Lagrangian Manifolds and Caustics 

We have just shown that the graph of a curl-free momentum field is 
always a Lagrangian manifold in phase space. The converse is not quite 
true, because many Lagrangian manifolds contain points at which the 
derivatives in the curl-free condition, Eq. (3.3), are not defined. Such points 
are associated with caustics, and are therefore important in WKB theory. 
We will now examine the conditions under which the derivatives of 
Eq. (3.3) are not defined, and thereby clarify the geometrical meaning of 
caustics. 

Since Lagrangian manifolds are f-dimensional, it is always possible to 
impose f coordinates, say (ul,..., u7), on one of them. It is an implication of 
the word "coordinate" that the u's provide a unique labeling of points on 
the manifold, which we assume to be smooth. Therefore the two 
f-dimensional vectors x and p can be regarded as functions of u on the 
Lagrangian manifold, x=x(u), p =p(u),  and these functions are smooth. 
Now it may or may not happen that the f variables x are locally invertible 
functions of u; the condition for invertibility is that the determinant of the 
Jacobian ~x/Ou should not vanish. If this condition is satisfied, we can write 
u= u(x), and then by substitution, p(x)=p(u(x)). In this way, p becomes 
a function of x on the Lagrangian manifold when the determinant of Ox/Ou 
does not vanish. On the other hand, if we approach a point of a 
Lagrangian manifold at which the determinant of ~x/Ou does vanish, then 
the matrix occurring in Eq. (3.3), 

(~Pi~" ~Pi ~UI,: (3.9) 
#Xj ~ OUk ~Xj 

must behave badly. In one dimension, it can do so only by diverging, since 
the derivative dp/du must be nonzero when dx/du is zero; in higher dimen- 
sions, its behavior may be more complicated, since some of the eigenvalues 
of Op/Ou may vanish at the same place that some of the eigenvalues of 
~x/Ou also vanish. 

The set of points on a Lagrangian manifold where the determinant of 
~x/au is zero is called the singular set, and the points of configuration space 
which lie directly below them are the caustic points. We will use somewhat 
loose terminology and refer to points of either kind as caustic points. The 
geometrical meaning of this condition, as illustrated in Fig. 5, is that the 
projection of the Lagrangian manifold onto configuration space has an 
edge at a caustic point, or, as is commonly said, the projection is singular 
there. One can also see that the f-dimensional tangent plane to the 
Lagrangian manifold at the caustic point is "vertical" in one or more of its 
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Fig. 5. The singular set is the set of points (x, p) on the Lagrangian manifold at which the 
tangent plane becomes "vertical" to configuration space in one or more of its directions. 
A configuration point x below the singular set is a caustic point. 

dimensions, i.e., that there exist vectors in this tangent plane which are 
annihilated when projected onto configuration space. 

These facts are fairly clear geometrically, but it is worthwhile to also 
examine them analytically. A small phase space vector 6z-- (6x, @) which 
is tangent to the Lagrangian manifold can be conveniently described by its 
displacement 6u in the u coordinates, i.e., 6x = (c?x/~u) 6u, 6p = (@/Ou) 6u. 
If the matrix c?x/?u is singular, then there exist nonzero displacements 6u 
such that 6x =0. For these displacements, the phase space vector 6z has 
vanishing components in its x components, and is therefore annihilated 
upon projection onto configuration space. It is convenient to designate the 
corank of the matrix t?x/~u as the order of the caustic; this is the number 
of linearly independent null eigenvectors 6u, and therefore the number of 
directions in which the tangent plane is "vertical." Usually caustics will be 
first order, but they may go as high as the f t h  order. A caustic of order f 
is a focus. 

Note that the definition of the singular set and the order of the caustic 
are independent of the coordinates u imposed on the Lagrangian manifold, 
since the rank of a matrix does not change under coordinate transforma- 
tions. 

In one degree of freedom, a caustic is simply a place where the 
derivative dp/dx of the curve is infinite (see Fig. 6). If the Lagrangian 
manifold is an orbit of a particle, then the caustic will also be a turning 
point, i.e., a place where 2 = 0; but, as we shall see, in time-dependent 
problems, the Lagrangian manifold at given time need not be the trace of 
an orbit, and, in such problems, caustics do not occur at turning points. 
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Fig. 6. 

J 

(x,p) 

x 

In one degree of freedom, a caustic occurs where the slope dp/dx of the Lagrangian 
manifold is infinite. It is not necessarily a turning point. 

3.2. Lagrangian Manifolds Project onto Curl-Free 
Momentum Fields 

We will now show that if a region of a Lagrangian manifold which is 
free of caustics is projected onto configuration space, so that Eq. (3.3) is 
meaningful, then the resulting momentum field is curl-free. This is the best 
converse we can make of the result proved above, that the graphs of curl- 
free momentum fields are always Lagrangian manifolds. 

To do this, we apply Stokes' theorem to the symplectic form, 
integrating it over a 2-dimensional surface in the 2f-dimensional phase 
space, and relating the result to a line integral over the boundary (see 
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Fig. 7. The integral of the symplectic form over a 2-dimensional surface in phase space is 
equal to the contour integral of p dx around the boundary. The line integral can be viewed 
either in phase space or via its projection onto configuration space. Note that the integral is 
always taken over a 2-dimensional surface, regardless of the dimension of the phase space. 
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Fig. 7). (The surface is 2-dimensional, not f-dimensional; it is generally not 
a Lagrangian manifold itself.) The result can be written 

fSurface (D : fBoundary p dx (3.10) 

The meaning of this equation is the following. To interpret the left side, we 
imagine imposing a coordinate system (~,/3) on the 2-dimensional surface, 
so that the f-dimensional vectors x, p are functions of (~,/3) on the surface. 
Then the meaning of the surface integral in Eq. (3.10) is 

f f v (3.11) 

One can see that the integrand on the right is simply ~o acting on two 
vectors tangent to the surface, 

~z, = \ ~  , ~z2 = \ e / 3 '  e/3} 

which is the reason for the notation ~ m in Eq. (3.10). 
The line integral on the right side of Eq. (3.10) can be viewed 

geometrically either as a line integral in phase space, in which both x 
and p are functions of some parameter along the boundary, or via the 
projection of the curve onto configuration space, in which p is a function 
of position x along the projected curve there. 

The proof of Eq. (3.10) proceeds in the usual way for Stokes' theorem, 
by breaking the region into small pieces, and demonstrating the result for 
each piece separately. On adding up the pieces, facing boundaries cancel. 
Equation (3.10) is valid for any closed curve in phase space serving as a 
boundary for a 2-dimensional surface, so long as x and p are smooth and 
well-defined in a neighborhood of the surface. In particular, the curve need 
not be the orbit of a physical system. (One must be careful, however, in 
applying the theorem to action angle variables, which have discon- 
tinuities. ) 

To return to Eq. (3.3), we consider a Lagrangian manifold or a region 
of one which has no caustics, as illustrated in Fig. 8, so that p is a single- 
valued, smooth function of x in the projection. We construct a closed curve 
on the Lagrangian manifold in such a way that the 2-dimensional surface 
bounded by the curve can also be chosen to lie on the Lagrangian 
manifold, as shown in the figure. Then the surface integral of Eq. (3.10) 
vanishes, and therefore the line integral of p dx around the closed loop in 
phase space must also vanish. This also applies to the integral of p(x)dx 
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Fig. 8. On integrating p dx around the boundary of a 2-dimensional region confined to a 
Lagrangian manifold, the result is zero. The momentum field p=p(x) resulting from the 
projection of a Lagrangian manifold onto configuration space is a perfect gradient. 

in the configuration space projection. Therefore integrals of p(x )dx  along 
open contours in configuration space must be invariant under continuous 
deformations of path, and must be functions only of the endpoints. This 
means that there exists a function S(x) such that p(x) = ~S(x)/~x, namely, 

S(x)=f  x p(x)dx (3.13) 

in which the lower limit is arbitrary. In this way we see that caustic-free 
regions of a Lagrangian manifold always project onto curl-free momentum 
fields, which was to be proved. 

3.3. Generating Functions of Lagrangian Manifolds 

We will call any function S(x) which satisfies p = p ( x ) =  •S/•x on a 
Lagrangian manifold a generating function o of that Lagrangian manifold. 
This is not universal terminology, but it is convenient and reasonable. 

Let us consider to what extent a generating function and a Lagrangian 
manifold uniquely specify one another. To begin, if we are given a 
Lagrangian manifold, a generating function is not even defined unless we 
avoid caustic points. Supposing that a region of the Lagrangian manifold 
can be found which has no caustic points, then Eq. (3.13) shows that the 
generating function is unique up to an additive constant. This additive con- 
stant is usually associated with phase conventions in semiclassical applica- 
tions. On the other hand, if the Lagrangian manifold has caustics, such as 
those illustrated in Figs. 9 and 10, then we can divide the Lagrangian 
manifold into regions which extend up to the caustics and which are 



Van Vleck Formula 23 

P 
L (x, p2(x)) 

(x, p ~(x)) 

Fig. 9. The existence of caustic points on a Lagrangian manifold usually leads to a multi- 
valued momentum field, p =pb(x),  here illustrated in one degree of freedom for b = 1, 2. 

separated by the caustics. Then each region corresponds to a distinct 
branch of the momentum field, p =pb(x), which is now multivalued, and 
each branch has its own generating function, Sb(X), where b is a branch 
index. Each generating function Sb(x ) is determined to within its own 
additive constant, although it is usually convenient to link some or all of 
the additive constants together by demanding that the different functions 
Sb(x) approach one another at the caustics dividing the branches. This is 
equivalent to defining an action function S(x, p) on the Lagrangian 
manifold itself, as the line integral of p dx along a contour confined to the 
Lagrangian manifold and taken relative to an arbitrary initial point, as 
shown in Fig. 11. This function then becomes multivalued upon projection, 
i.e., we have Sb(X)= S(x, pb(x)). 
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Fig. 10. Multiple branches pA(X), ps(X) of the momentum field in two degrees of freedom. 
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Fig. 11. An action function S(x, p) can be defined at phase space points on a Lagrangian 
manifold as the integral ofp  dx along a contour confined to the Lagrangian manifold, relative 
to an initial point (Xo, P0)- This action function becomes multivalued upon projection onto 
configuration space, but is continuous at caustics. 

Even the function S(x, p) on the Lagrangian manifold in phase space 
will be multiple-valued, if the manifold has a nontrivial topology. This has 
nothing to do with caustics, but rather the fact that sometimes a given final 
point of a Lagrangian manifold can be reached by more than one topologi- 
cally distinct path leading from the given initial point. This occurs with the 
invariant tori of integrable systems, and also in the neighborhood of 
unstable periodic orbits of chaotic systems. Lagrangian manifolds which 
are topologically nontrivial do not normally occur in the Van Vleck 
formula. 

Some Lagrangian manifolds consist entirely of caustic points, such as 
the surface x = x0 = const, illustrated in Fig. 12. Such Lagrangian manifolds 

Fig. 12. 

a. x 

x = x  0 

An example of a Lagrangian manifold which has no x-space generating function 
S(x), since it consists entirely of caustic points. 
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do not have a generating function S(x), although we will show momen- 
tarily that they do have generating functions with respect to other 
coordinate systems. These Lagrangian manifolds are important in the 
semiclassical theory of the propagator, as we shall see. 

Incidentally, Eq. (3.3) gives us another reason why all curves in the 
2-dimensional phase plane are Lagrangian: it is because all functions p(x) 
in one dimension are perfect gradients. 

Although the definition of a Lagrangian manifold, Eq. (3.7), is for- 
mulated in such a way as to be invariant under canonical transformations, 
the generating function S(x) is specific to the x-representation. Everything 
we have done with the generating function S(x), however, can be carried 
over to any generalized coordinate Q, which is part of some canonical 
coordinate system (Q, P). This will give a new generating function 
S(Q)=~P(Q)dQ,  in which P is determined as a function of Q by 
projecting the Lagrangian manifold onto Q-space. (Even in the case of 
nonlinear coordinates, we project onto Q-space simply by throwing away 
the P coordinates.) In general, there will again be caustics, which will occur 
where the matrix ~?Q/~u is singular; however, these singularities will usually 
not occur at the same points on the Lagrangian manifold at which Ox/3u 
is singular. That is, the singular set is determined relative to the representa- 
tion being used. 

For example, under the canonical transformation Q =p,  P = - x ,  we 
have 

S(Q) = fQ P(Q ) dQ = S(p) = - fP x(p) dp (3.14) 

Notice that we are now dealing with a vector field x(p) on momentum 
space, which will satisfy a version of Eq. (3.3) with the roles of x and p 
swapped. If the initial points for the x- and p-space integrals are the same 
point (x0, Po), as illustrated in Fig. 11, then the old and new actions are 
related by 

S(p) = S ( x ) - x p + x o P o  (3.15) 

However, S(p) may be defined even when S(x) is not; for example, 
the Lagrangian manifold of Fig. 12, although it has no configuration- 
space generating function, does have the perfectly nice momentum-space 
generating function, ~(p) = - Xo p. 

The fact that the locations of caustic points are relative to the 
representation being used is important in WKB theory, for it allows one to 
avoid caustics by changing representation. For example, in one degree of 
freedom it is geometrically obvious that configuration-space caustics and 
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P 

Fig. 13. In one degree of freedom, configuration-space caustics and momentum-space 
caustics never occur at the same place. Even in higher degrees of freedom, there always exists 
a representation in which a given point is caustic-free. 

momentum-space caustics never occur at the same places on a Lagrangian 
manifold, as illustrated in Fig. 13. In higher degrees of freedom, this may 
no longer be true, as for example with the Lagrangian manifold specified 
by xl = a = const, P2 = b = const in the (xl,  x2, Pl ,  P2) phase space. Every 
point of this Lagrangian manifold is simultaneously on a configuration- 
space caustic and a momentum-space caustic. If, however, we perform 
a canonical transformation in which (Q1,  Q2)=(pl,x2), then in the 
Q-representation, the Lagrangian manifold is caustic-free. Maslov has 
shown (4) that by using a representation involving some mixture of com- 
muting x's and p's, it is always possible to avoid caustics. The proof is 
notationally awkward, but not difficult. This leads to another fact, also 
geometrically obvious in one degree of freedom, that every Lagrangian 

Fig. 14. 

= q 

A Lagrangian manifold can always be covered by overlapping regions such that 
each region is caustic-free in some representation. 
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manifold can be covered by overlapping regions, such that every region is 
caustic-free in some representation obtained from a commuting mixture 
of x's and p's. See Fig. 14, in which regions A and C are caustic-free in 
the x-representation, while regions B and D are caustic-free in the 
p-representation. 

3.4. Generating Functions of Canonical Transformations 

The generating functions of classical mechanics, which are used to 
generate canonical transformations, are only a slight generalization of the 
generating functions of Lagrangian manifolds we have introduced here. We 
have been discussing the generating function for a specific Lagrangian 
manifold, such a would arise in WKB theory when dealing with a specific 
wave function. On the other hand, a whole family of wave functions, 
such as a complete set of eigenstates of some complete set of commuting 
observables, will produce a whole family of Lagrangian manifolds, 
parametrized by some set of parameters ). = (21 ,..., 2;). There will in general 
be f of these parameters for a system of f degrees of freedom, for reasons 
explained in ref. 7. In this way, the family of wave functions of WKB form 
is associated with an action function S(x, 2). 

The geometrical picture corresponding to S(x, 2) is shown in Fig. 15, 
in which phase space is divided up into an f-parameter family of 
f-dimensional Lagrangian manifolds. The parameter 2 indicates which 
Lagrangian manifold we are on, and p(x, 2) = ~S/~?x is the momentum field 
(possibly multivalued) associated with it. In quantum mechanics, the 
parameter 2 may be restricted to discrete values, but in classical mechanics 
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Fig. 15. A foliation of phase space into an f -paramete r  family of f -d imens ional  Lagrangian 
manifolds. Such a foliation corresponds to a canonical transformation, once a parameters 2 
of the Lagrangian manifolds are chosen and identified with some set of commuting new Q's  
and P's.  
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it is allowed to be continuous, so that an entire 2f-dimensional region of 
phase space (perhaps all of it) is filled by the family of Lagrangian 
manifolds. Such a division of a space into a family of lower dimensional 
surfaces is called a foliation; an individual surface itself is called a leaf The 
parameter 2 may be allowed to be an arbitrary label of the Lagrangian 
manifolds, except that it should provide a unique specification for the 
members of the family. 

The function S(x, 2) is essentially one of the generating functions of 
canonical transformations in classical mechanics. To see this, note first that 
any given point of phase space (x, p) must lie on one leaf of the foliation, 
so the function 2 = 2(x, p) is uniquely specified. Therefore the 2's can serve 
as one half of a new coordinate system on phase space. Further, the 
Lagrangian condition implies that the Poisson brackets of the 2's among 
themselves vanish, {2i, 2j} = 0, so 2 can be identified with either the Q or 
P of a new canonical coordinate system. The proof of this fact proceeds as 
follows. Because the Lagrangian manifolds are contour surfaces of all the 
2's, we have X-V2~=0 ,  k=l,...,f, for any vector X tangent to the 
Lagrangian manifold. (The operator V is a phase space gradient.) This can 
be written 

0 = X.  V2 k = X. J - 1j .  V2k = co(X, J V2k) (3.16) 

This is true for any of f linearly independent vectors X tangent to the 
Lagrangian manifold. Therefore the vectors J V2k, k = 1,..., f ,  must also be 
tangent to the Lagrangian manifold, because the maximum number of 
linearly independent vectors which are pairwise annihilated by co is f .  
Therefore the symplectic form acting on any pair of the J V2~'s must 
vanish. But this can be written in terms of the Poisson bracket, 

co(J V2k, J V2t) = V2k" J ' J -  1j .  V4 l 

= - V 2 k - J . V 2 , =  - {2k, 4,} = 0  (3.17) 

It does not matter whether we identify the 2's with the Q's or P's of 
a new coordinate system, or even with some mixture of commuting Q's and 
P's. But to be specific, let us take 2 =  Q. Then the generating relation 
p(xcQ) = OS(x, Q)/Ox is clear on the basis of our whole development; the 
other generating relation P(x, Q ) = - ~ S ( x ,  Q)/~Q serves as a definition 
of P, and is designed so as to make the formula for the symplectic form, 
Eq. (3.4), appear the same in both the old and new coordinates. That is, 
one demands the equality Of the integrals, 

~ pdx=~ P dQ (3.18) 

for all closed contours in phase space. 
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We have constructed here the Goldstein(17)-type F~(q, Q) generating 
function; the type F2(q, P) generating function is really the same, except the 
labels 2 of the Lagrangian manifolds of the foliation are considered to be 
P's instead of Q's. The other two types, F3(p, Q), F4(p, P) are computed 
by projecting the Lagrangian manifolds of the foliation onto p-space, 
instead of onto q-space, and thus they bear the same relation to F~ and F2 
that S(q) does to S(p) in Eq. (3.15). Books on classical mechanics some- 
times discuss the fact that not every canonical transformation has a 
generating function, such as the identity transformation, Q=q, P=p, 
which does not have an F~(q, Q) generating function. The reason for this 
geometrically is the existence of caustics; for example, the identity transfor- 
mation corresponds to a family of Lagrangian manifolds q -- Q, where Q is 
interpreted as the parameter, which breaks phase space up into a family of 
vertical lines. See Figs. 12 and 16. 

A really satisfactory geometrical interpretation of generating functions 
and their role in semiclassical mechanics would involve a more symmetrical 
treatment of the old and new variables than we have taken here. From a 
classical standpoint, this involves working in a kind of doubled phase 
space, where the differential of the action is p d q - P  dQ, as discussed in 
Abraham and Marsden. (~8) From a quantum or semiclassical standpoint, it 
is necessary to recognize that a wavefunction 0(q), which is parametrized 
by parameters 2 = Q, might better be written 0(q, Q) or even (q] Q) ,  and 
that it really satisfies two Schr6dinger equations, one in the q variables, 
and one in the Q variables. This point of view has been developed in an 
elegant analysis by Miller, (u) and is discussed more fully in ref. 7. 

P 

Fig. 16. 

Q0 Q1 Q2 

~- q 

The identity canonical transformation Q = q, P =p is associated with a foliation of 
phase space into vertical Lagrangian manifolds, labeled by the values of Q. 
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3.5. Solving the Hamilton-Jacobi Equation 

Let us now see how the theory of Lagrangian manifolds can be 
applied to the Hamilton-Jacobi equation. Consider Fig. 17, in which 
an initial Lagrangian manifold L' is obtained from the initial action 
S(x', t') = So(x') by 

~S(x', t') 
po(x') =p(x',  t') gx' (3.19) 

We assume the initial Lagrangian manifold is free of caustics, so that po(x') 
is a single-valued momentum field. Now we let each point of the initial 
Lagrangian manifold, such as (x', p') in the figure, flow according to 
Hamilton's equations, thereby mapping the initial Lagrangian manifold L' 
into a final, f-dimensional manifold L". It turns out, as we will show 
momentarily, that L" is also Lagrangian. Therefore, if L" is free of caustics, 
it also has a generating function, which we may write as S(x", t"). For 
many problems the final Lagrangian manifold will be free of caustics for 
short elapsed times t " - t ' ,  because only small changes in topology will 
occur in small times. If, however, L' has tails which extend to infinity, then 
it may be that caustics will develop far out on the tails in arbitrarily short 
times. For simplicity, we will assume for now that L" has no caustics. 

It is then a reasonable guess that S(x", t"), with suitably chosen 
additive constant, is the solution of the Hamilton-Jacobi equation, 
Eq. (2.6). This is true, but there are several steps involved in the proof. 

The first is to show that Lagrangian manifolds are always mapped 
into other Lagrangian manifolds under the time flows generated by 
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L rp 

~c t x pt 

Fig. 17. An initial Lagrangian manifold L' at time t' is mapped into a final Lagrangian 
manifold L" at time t" by following orbits. The solution of the time-dependent Hamil ton-  
Jacobi equation is a generating function of the final Lagrangian manifold. 
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Hamilton's equations. This follows immediately from a basic fact about the 
symplectic form, illustrated in Fig. 18. We consider an initial condition 
(x', p') in phase space, and an orbit taking it to (x", p") in elapsed time 
t " - t ' .  Two small displacements 6z], 3z;, going from (x', p') to initial 
conditions for two nearby orbits, are mapped under the flow to final 
displacements 6z]', 6z~. We use the linearized equations of motion to 
describe the evolution of the displacements. It then turns out that 

co(6z~, ~z;) =co(&~, 6z~) (3.20) 

giving us a sense in which the symplectic form is conserved in time. 
This is equivalent to the fact that the solution to Hamilton's equations, 
expressing the final q's and p's as functions of the initial q's and p's at fixed 
time, constitute a canonical transformation. If now the initial conditions 
(x', p') lie on an initial Lagrangian manifold, and if 6z'l, 3z'2 are tangent to 
it, then the left Side of Eq. (3.20) vanishes. But then 6z'~, 3z~ are tangent 
to the final manifold, which must therefore also be Lagrangian. 

Therefore L" has a generating function, determined to within an 
additive constant. Not  just any constant will do, however, because S(x", 1") 
must satisfy both the Hamilton-Jacobi equation and the initial conditions. 
It turns out that the solution we want is given by 

S(x", t") = S(x', t') + R(x", t"; x', t') (3.21) 

where R is Hamilton's principal function, i.e., the line integral of 
p d x - H d t  along an orbit connecting (x', t') with (x", t"). 

Fig. 18. 
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When a pair of small displacements is mapped along an orbit by the linearized 
equations of motion, the symplectic form acting on them is constant in time. 
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To prove this, we must first be careful about the functional 
dependences of the symbols we have used. The times t', t" can be specified 
independently, as can the final point x" at which we wish to evaluate the 
action. Given these, however, the initial point x' is determined. The rule 
for the function x'=x'( t ' ,  t",x") is the following. Given x", we find the 
momentum p" which lies on the final Lagrangian manifold above x". We 
then follow the orbit ending at (x", p") at time t" backward to (x', p') 
at time t'. The x' value of this initial condition is then the function 
x'(t', t", x"). Finding the final momentum p", given x", is easy to say and 
is clear geometrically, but in practice one usually must search initial condi- 
tions (x', p') for an orbit which ends at coordinate x" at time t". 

Direct substitution now verifies that S(x", t") from Eq. (3.21) does 
satisfy the Hamilton-Jacobi equation. First we differentiate with respect to 
x", obtaining 

aS(x", t") OS(x', t') #x' OR ~x' dR 
~x" ~x' ~ -~ Ox' ~x" ~- Ox ' ~  (3.22) 

But, because OS(x', t ')/~x'=p' and c3R/~?x'=-p', the first two terms 
cancel, while the last term gives p". Therefore 

OS(x", t") 
p" (3.23) 

~X" 

This shows that S(x", t") defined by Eq. (3.21), which must in any case 
generate some Lagrangian manifold, in fact generates the final Lagrangian 
manifold which is the image of the initial Lagrangian manifold under the 
time evolution. 

Similarly, differentiating Eq. (3.21) with respect to t" yields 

~S(x", t") 
~3t" 

H(x", p", t") (3.24) 

with two terms again canceling. This shows that S(x", t") actually does 
satisfy the time-dependent Hamilton-Jacobi equation. 

Finally, we note that as t" ~ t', the R term in Eq. (3.21) goes to zero 
and S(x", t")--, S(x', t'), because the integral of L dt =p d q -  H dt, where L 
is the Lagrangian, along a zero-length orbit is zerol Therefore S(x", t") 
satisfies the required initial conditions, and it is the solution we seek. 

An interesting interpretation of this solution is obtained by endowing 
the particles of our swarm, introduced earlier, with an action S in addition 
to their position and momentum (x, p). The initial action is S(x', t'), 
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and as time evolves, each particle accumulates action by integrating 
L d t = p d q - H d t .  The action S(x", t") at a final point x" is then simply 
the action of whatever particle ends up there. 

4. AMPLITUDE TRANSPORT,  CAUSTICS, 
AND THE M A S L O V  INDEX 

To complete the solution of the initial value problem in WKB theory, 
we must now solve the amplitude transport equation, Eq. (2.9). This is 
just the continuity equation, which we will interpret as representing con- 
servation of particles of density p = IAI 2. Thus, we can immediately write 
p(x", t")dx" =p(x',  t ')dx', as illustrated in Fig. 19, or, by taking square 
roots, 

~x' t ~/2 
A(x", t")= A(x', t') det ~x,, (4.1) 

The expression c3x'/•x" is the derivative of the function x'(t', t", x") dis- 
cussed below Eq. (3.21); it is neither a derivative at fixed.p' nor at fixed p", 
since as x" changes, both p' and p" move along their respective Lagrangian 
manifolds. Collecting things, we can now write the solution to the initial 
value problem in WKB theory in the form 

O(x", t!') = A(x', t') det ~ exp [S(x', t') + R(x", t"; x', t ')] (4.2) 

For short elapsed times, the absolute value signs in Eqs. (4.1) and 
(4.2) are not necessary, since at t = t', we have det c3x'/Ox" = + 1. For such 
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Fig. 19. The number  of particles between x '  and x ' + d x '  is the same as between x" and 
x" + dx". This leads to an immediate solution of the amplitude transport  equation. 

822/68/1-2-3 
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times the amplitude A(x", t") remains real and positive. At longer times, 
the determinant may change sign--not, as it turns out, by passing through 
zero, but by diverging. To examine this question, it is better to look at the 
inverse matrix, Ox"/~x', which is always finite. To see this, note first that x' 
uniquely labels points on the initial Lagrangian manifold, since we assume 
it has no caustics. Therefore we can treat x' as coordinates on L', and iden- 
tify x' with the u coordinates introduced in Eq. (3.9). By carrying this coor- 
dinate system along with the Lagrangian manifold as it evolves, x' can also 
be used as coordinates at any later time. Then the finiteness of Ox"/~?x' is 
merely a reflection of the fact that L" is smooth and well behaved (as we 
assume). 

On the other hand, the quantity det Ox"/t~x' may vanish, signaling a 
caustic of L", precisely as in Eq. (3.9). This is illustrated in Fig. 20, where 
orbit a has reached a caustic of L" at the final time t". In the same 
diagram, orbit b has not yet reached a caustic at the final time, whereas 
orbit c has already passed through one; the respective derivatives 8x"/Ox' 
(in one degree of freedom) for orbits b, a, c are positive, zero, and negative. 

A common misconception about caustics is that they are somehow a 
property of a single orbit, taken out of context. In fact, a caustic is only 
determined by a family of orbits, which are always associated with a 
Lagrangian manifold. For example, the same orbit a in Fig. 20 would not 
be at a caustic at time t" if the initial Lagrangian manifold were modified 
[leaving (x', p') alone]. 

Equation (4.2) shows that the WKB expression for the final wave 
function ~(x", t") diverges when x" is at a caustic. Since nonlinear partial 
differential equations typically develop singularities in finite time, this 

Fig. 20. 

/ 

P 
L" 

b 

X X pr 

Orbit a, starting at x', has reached a caustic at x". Orbit b has not yet reached a 
caustic at the final time, while orbit c has passed one. 
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behavior is not surprising. The divergence represents a nonuniformity in 
the variables (x", t") of the expansion of 0 in h, i.e., although the error in 

goes to zero like h as h --* 0 for fixed (x", t"), it goes to ~ for fixed h as 
(x", t") approaches a caustic. 

What is more surprising is that an almost obvious continuation of the 
solution through the divergence is valid (in the sense of an asymptotic 
expansion in h), even though the solution near the caustic is not. The 
obvious part is to take the prescription surrounding Eq. (3.21) literally, 
even for orbits which have passed through caustics; the only change is that 
the function x'(t', t", x") is now multiple-valued, corresponding to possibly 
several orbits which reach x" in the allowed time from the initial 
Lagrangian manifold (but with different values of x', p', and p"). This is 
illustrated in Fig. 21. 

As for the amplitude, let us assume that det dx"/~x', which was 
initially + 1, passes through zero and goes negative at the caustics. Then it 
is logical to interpret the square root in Eq. (4.1) as giving an imaginary 
result after the first caustic has been passed; by convention, we will force 
A(x", t") to be positive, absorbing the imaginary unit into a phase factor. 
The only part that is not obvious is whether the phase factor should be - i  
or +i;  we will write it as exp(-i~cz/2), with ~c an integer yet to be deter- 
mined. As more caustics are passed along an orbit, the phase factor will 
accumulate, always being representable in the form exp(-ircrc/2) for some 
integer rc. The integer x is variously called the Morse index or Maslov 
index; the distinction will be discussed below. 

Finally, we interpret the multiple orbits arriving at the same final x" 

P 
L"  

x; x" 
x 

Fig. 21. After caustics develop, the quantities x', p' ,  and p", all considered functions of 
(t', t", x"), become multiple-valued, corresponding to distinct orbits arriving at (x", t"). Two 
branches are shown, b = 1, 2. 
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point as contributing independent wavelets to the solution, all of which are 
to be added together. The result is 

~(x", t")=~Ab(x", t") exp Sb(x", t")--t~cb 
b 

(4.3) 

where b is the branch of the function x'(t', t", x"), and where Ab, Sb, and 
~Cb are determined separately for each branch [now the absolute value signs 
in Eq. (4.1) are necessary]. 

4.1. M o m e n t u m - S p a c e  W a v e  Functions 

The plausibility arguments leading to Eq. (4.3) can be strengthened, 
and a rule obtained for computing the indices ~c, by considering momen- 
tum-space wave functions. We begin with a configuration-space wave 
function consisting of a single term of phase integral form, 

ip(x)= A(x)exp [~ S(x)l (4.4) 

corresponding to a Lagrangian manifold which is free of caustics in 
configuration space. We suppose further that the Lagrangian manifold is 
free of momentum space caustics, i.e., that either x or p can be used as 
coordinates on the Lagrangian manifold, and that x and p are invertible 
functions of each other. This is illustrated in Fig. 22. We will write 

P 

P 

X 
J' X 

Fig. 22. A Lagrangian manifold which has neither x-space caustics nor p-space caustics. The 
stationary phase evaluation of the Fourier transform converts a single branch of a WKB wave 
function in the x-representation into another single branch in the p-representation. 
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p=pL(x) and X=xL(p) for these functions, using the subscript L to dis- 
tinguish functions from values. 

Then the momentum-space wave function is given by the Fourier 
transform, 

1 
(4.5) 

We evaluate this integral by the stationary phase approximation, because 
by so doing we obtain an approximation for ~b which is of the same order 
in h as that we started with for ~p. Note that p is a parameter of the 
integral, so the stationary phase points are x values depending on p; they 
are the roots ofp  = ~S(x)/#x =pL(x). But by our assumptions, there is only 
one such root, x = XL(p). The stationary phase evaluation of the integral 
also involves the symmetric matrix M ( x ) =  ~2S(x)/~x ~x = @L(X)fi?X; this 
matrix is finite and nonsingular by our assumption of the absence of 
caustics, so its eigenvalues 2 are real and nonzero. The integral then gives 

(J(p ) = e'~/4A(x) ldet M(x)[ - ~/Z exp { ~ [ S(x) - 'xp ] } (4.6) 

where cr is an integer given by the index of inertia of M, defined as the 
number of positive eigenvalues minus the number of negative eigenvalues. 
On the right side of Eq. (4.6), x is understood to mean XL(p); A, M, 
and S depend on x, but c~ does not, since if det M neither vanishes nor 
diverges, its index of inertia does not change. That is, regarded as a func- 
tion of position on the Lagrangian manifold, cr is constant. 

Notice that like ~(x), ~b(p) also has phase integral form. The momen- 
tum-space action is given by 

S(p) = S(x) - xp (4.7) 

so that it is the momentum-space generating function of the Lagrangian 
manifold, precisely as in Eq. (3.15). The momentum-space amplitude 
A(p) is conveniently expressed in terms of a momentum-space density 
~(p) = A(p) 2 given by 

fi(p) = p(x) det ~-~ (4.8) 

exactly as we would expect for the transformation of a density under a 
change of variables. (Here we have written M - l =  ~?x/@.) Only the overall 
phase exp(ier~/4) of Eq. (4.6) might not have been predicted on classical 
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grounds, and it is dependent on the usual phase conventions used for the 
Fourier transform in quantum mechanics. 

A significant fact about these calculations is that the stationary phase 
approximation is a semiclassical approximation of the same order in h as 
that inherent in the WKB form of the wave functions, and that it is also 
interpreted geometrically in terms of Lagrangian manifolds in phase space 
and their projections. More generally, any quantum mechanical operation 
involving integrals or sums can be evaluated by the stationary phase 
approximation, and the error is always of order h. However, the error is 
generally nonuniform in other parameters, such as position, time, quantum 
numbers, etc. 

Let us now modify this calculation by allowing the Lagrangian 
manifold to have a momentum-space caustic (but still without any con- 
figuration-space caustics), as shown in Fig. 23. Now the stationary phase 
evaluation of the integral in Eq. (4.5) produces two stationary phase points 
xl, x2 for a given value of p, as shown in the figure, corresponding to the 
now double-valued function xL(p). The integral is now expressed as a sum 
of two terms, each of the WKB form shown in Eq. (4.6). 

The index of inertia of M, regarded as a function on the Lagrangian 
manifold, is no longer constant, but rather changes discontinuously at the 
momentum-space caustic, where M = ~?p{~x has vanishing determinant. The 
number of eigenvalues of M which vanish at the caustic is the order of the 
caustic, and each eigenvalue which passes through zero at the caustic will 
change the index of inertia of M by either + 2 or -2 ,  depending on the 
direction of the change. Therefore the relative phase shift between the two 

P 

Pc 

P 

6 

x 1 x2 
~" X 

Fig. 23. A Lagrangian manifold with no x-space caustics and one p-space caustic, at 
m o m e n t u m  value Pc. A single-branch wave function in WKB form in the x-representation 
corresponds to two branches in the p-representation, with a relative phase shift which is an 
integral multiple of n/2. 



Van Vleck Formula 39 

branches due to the indices of inertia will have the form exp(-i~czc/2), for 
some integer ~c. Altogether, the wave function can be written in the form 

b 
(4.9) 

where c% is the index of inertia of one of the branches, whose ~c is zero; 
where /s for the other branch represents the relative phase shift due to the 
change in the index of inertia across the caustic; and where Sb and Ab are 
defined for each branch by Eqs. (4.7) and (4.8) [with .,]b = (r For 
example, in the case illustrated in Fig. 23 for one degree of freedom, we find 
~o = 1, ~c~ = 0, and ~c 2 = 1. 

4.2. The Maslov Index 

Our calculation of momentum-space wave functions has shown that a 
WKB wave function consisting of a single branch in one representation 
may result in multiple branches in another representation, exactly as we 
have hypothesized in Eq. (4.3) for the solution of the time-dependent 
problem in phase integral theory, and that the branches differ from one 
another by phase shifts which are integral multiples of re/2. We can now 
turn this process around, and argue that if we believe the multiple branch 
form for the final wave function ~,(x", t") shown in Eq. (4.3), then the 
relative phase shifts between the branches can be determined by switching 
to another representation in a region straddling the x-space caustic, such 
that the region is caustic-free in the new representation. We then simply 
demand that the transformed wave function be continuous over the region 
in question. A rigorous justification of this prescription may be found in the 
books by Maslov and by Maslov and Fedoriuk (4) and will not be given 
here, but the idea is certainly compelling and plausible. Here we will simply 
proceed to work out the details of the prescription. 

We will use the initial position x' as coordinate on the final 
Lagrangian manifold L", as discussed earlier, so the matrices c3x"/~x' and 
Op"/~p' are smooth and finite on the L". The configuration-space caustics, 
which separate the branches of Eq. (4.3), are the places on the Lagrangian 
manifold where det(Ox"/Ox') vanishes. We will assume that these caustics 
are surfaces of dimensionality f - 1  on the f-dimensional Lagrangian 
manifold, thereby separating two f-dimensional regions of the manifold. 
(This assumption is typically valid, but not always; we might have a case 
such as illustrated in Fig. 12, or we might find that the singular set has 
kinks or portions of dimensionality less than f -  1. See Arnold (1~ for more 
details on this point.) We will also assume for simplicity that momentum- 
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space caustics do not coincide with configuration-space caustics, so that 
det(@"/~x') is nonzero in a region straddling the configuration-space 
caustic. Later we will relax this assumption, but for now it means that 
Ox"/@"= (Ox"/Ox')(@"/Qx')-1 is finite and well behaved, and that caustics 
are equally well signalled by the vanishing of det(3x"/@") as by that of 
det(~x"/Ox'). 

We concentrate on two branches, say b = 1, 2, of Eq. (4.3). On per- 
forming the stationary phase evaluation of the Fourier transform to obtain 
~bb(p", t") for each of the branches, we find, first, that the amplitude 
Ab(P", t ' )  is continuous across the caustic, even though Ab(x", t') is not. 
This follows from combining the result of the stationary phase evaluation 
of the integral with Eq. (4.1), 

Ab(p', f ')= Ab(X', t") ~X" 1/2 ~X r 1/2 Op,----71 =A(x', t ' )  @ ,  (4.10) 

Second, the phases of the two branches of ~bb(p", t ' )  can be written 
Sb(P") -- i~cjc/2 + ic%zc/4, where S b ( P " )  = S b ( x ' )  - -  x ' p ' ,  where ~:b repre- 
sents the indices in Eq. (4.3), presumed as yet unknown, and where ~b is 
the index of inertia of ~x"/@'=(32S(x")/~x'~x") -1. Since Sb(P") is 
automatically continuous across the caustic, demanding equality of 
momentum-space phases requires that 

K2=KI+  ~ (4.11) 

Thus, we can say that the change in ~c across a caustic is the number of 
eigenvalues of Ox"/@" which change from negative to positive at the 
caustic, minus the number which change the other way. The bounds on A~c 
are therefore 

-n<,A~c~ +n (4.12) 

where n is the order of the caustic. 
This A~c links two branches of O(x", t") together. By extending the 

process, it is possible to associate a total A~c measured between the 
endpoints of a curve segment on a Lagrangian manifold, which may cross 
a number of caustics and straddle several branches. We assume that the 
result of this computation does not change if the path is continuously 
deformed, while being confined to the Lagrangian manifold. This is a con- 
sistency requirement, discussed by Maslov and by Maslov and Fedoriuk (4) 
and by Arnold. ~ 

If it should happen that momentum-space caustics coincide with con- 
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figuration-space caustics, then we must use a mixed representation Q, com- 
posed of some commuting mixture of the original x's and p's. Then the 
transformation to the Q-representation involves a Fourier transform in a 
smaller number of variables than f .  Otherwise, all the arguments above are 
repeated, with only minor changes. 

The quantity A~c, associated with a directed curve segment on a 
Lagrangian manifold, is the Maslov index of that segment. Notice that the 
curve does not have to be the orbit of a physical system; indeed, for the 
time-dependent problem we have considered, it usually is not. Notice also 
that the Maslov index really only depends on the geometry of the 
Lagrangian manifold in phase space, and on its projection onto configura- 
tion space; the origin of the Lagrangian manifold in some dynamical 
problem is irrelevant. The Maslov index is, however, dependent on the 
representation (x in this case) being used. Although the Maslov index does 
not change under continuous deformations of the curve, it may change 
under discontinuous ones; for example, on an invariant torus of an 
integrable system, there may be more than one topologically distinct path 
joining two given branches, and the Maslov indices of these two paths are 
not necessarily the same. Thus, the Maslov index is not simply a relative 
property of two branches, but depends also on the path which links them. 

4.3. The  M o r s e  Index 

The computation of the Maslov index we have just described allows us 
to determine the relative phase space shifts between the branches of the 
wave function O(x", t") at a fixed time, but it does not directly allow us to 
determine the absolute phase of any branch. A slight modification of the 
method, however, will remedy this shortcoming. That is, we simply repeat 
the process of patching our way through caustics by switching to the 
momentum (or other appropriate) representation, not along a curve on the 
Lagrangian manifold, but rather along an orbit. For example, when an 
orbit is at an x-space caustic, as in Fig. 24, we transform to (say) the 
momentum representation in some time interval around the caustic, and 
over some interval on the Lagrangian manifold straddling the caustic. 
Continuity of the transformed wave function then leads to the same rule as 
above, formulated in terms of the eigenvalues 2 of the matrix, 

~?2S(x) ] -1  c~x 

A ( t ) = L a x a x j  = 
(4.13) 

and the direction in which they pass through zero. The only difference is 
that now A is considered a function of time along an orbit. Since x is 
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P2 
Pa 

X 2 / _%/ 
x l  

Fig. 24. An orbit is passing through a caustic. The behavior of the eigenvalues of A = Ox/Op, 
considered as a function of time along the orbit, determine the j ump  Ar  in the index K. 

known to be zero at t " =  t', the changes AK along an orbit determined by 
this rule allow us to determine the final Kb'S for all the branches. 

This method for computing xb can be simplified in the case of 
Hamiltonians which have the form of kinetic plus potential energies, with 
or without magnetic fields. To do this, we require an equation of evolution 
for A along an orbit. Let 6z= (6x, 61)) be a small displacement vector 
tangent to the Lagrangian manifold, whose base is on the orbit of interest 
and whose tip is carried along by the flow, as in Fig. 25. The equations of 

P2 
Pl 

1 
/ 

x 1 

x 2 

Fig. 25. Small vectors 6z tangent to a Lagrangian manifold are transported along with an 
orbit. The properties of these vectors determine the locations of the caustics and the jumps  in 
the indices ~. 
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evolution of fiz are just the linearized equations of motion obtained by 
replacing x(t), p(t) in Hamilton's equations by x( t )+ fix(t), p( t )+ 3p(t) 
and expanding to first order in small quantities. The result is 

6X = Hpx ~x + Hpp fip 
(4.14) 

fiI~= - Hxx f i x -  Hxp fi p 

where Hpx is t h e f •  O2H(x, p)/~p ?x, etc., evaluated as a function 
of time along the orbit. Notice that since fiz = (fix, fip) is tangent to the 
Lagrangian manifold, its x and p components are related by fix(t)= 
A(t) fip(t). 

Let us repeat this process for a collection of f linearly independent 
vectors 3z~11,..., fiz If), tangent to the Lagrangian manifold, as in Fig. 25, so 
that each of these vectors obeys Eqs. (4.14). Let us also stack the x and p 
components of these f vectors columnwise to form two f •  matrices 
A, C given by Aik =3xl  k), Cik = 31)I k), SO that A( t )=A( t )C( t ) .  Then the 
equations of evolution of A and C are just Eqs. (4.14), with fix and fip 
replaced by A and C, respectively. 

Assuming for simplicity that x-space caustics do not coincide with 
p-space caustics, the matrix C will be nonsingular in the region around the 
x-space caustic, through which we wish to patch. Then in this region we 
can write A = AC-1, or 

A =AC-~-AC-~CC ~=Hpp+HpxA+Hxp+AHxxA  (4.15) 

This is the desired evolution equation for A. 
We can now convert this into an equation for the evolution of the 

eigenvalues 2, whose vanishing signals a caustic. Let e be a normalized, real 
eigenvector of A, such that Ae = 2e. Then we have J. = e. A. e (the terms 
involving e-6 cancel since e is normalized). Therefore 

= e. Hpp. e + 22(e. Hpx. e) + )~2(e. Hxx. e) (4.16) 

From this we see that when ), = 0, J, > 0, since the matrix Hpp, which is the 
inverse mass tensor, is positive definite. Therefore the index K, considered 
as a function of time along an orbit, always increases at caustics, since all 
the vanishing eigenvalues of A pass through zero from negative to positive 
values. The amount of the jump is equal to the order of the caustic. (We 
need not worry about running out of negative eigenvalues of A as we 
proceed along an orbit; the analysis above is only applicable to the region 
near the x-space caustics, where we assume there are no p-space caustics. 
In between x-space caustics, however, there may well be p-space caustics, 
at which some eigenvalues of A will change sign by diverging.) 
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Altogether, for kinetic-plus-potential systems we have a simple rule, 
which says that the index x is simply the count of caustics (multiplicities 
included) encountered by an orbit passing from the initial to the final 
Lagrangian manifolds. This rule, and its relation to the positive-definiteness 
of the mass tensor, has been discovered and rediscovered a number of 
times; it is discussed by Maslov, (4) Pechukas, (21) and Levit et al. (2~ The 
index ~c obtained by counting caustics is properly called the Morse index. 
In the present context, the Morse index can be viewed as a special case of 
the Maslov index if we enlarge our phase space to include time and energy 
as conjugate variables. It then turns out that the Morse index is the Maslov 
index of a curve segment (namely the orbit itself) which lies on a 
Lagrangian manifold in the extended phase space. 

By whatever name, the Maslov prescription for computing the index 
by demanding continuity in transformed wave functions is more general 
than counting caustics because it applies to Hamiltonians in which the 
matrix Hpp is not positive definite. It also applies to any Hamiltonian in 
representations other than the x-representation; for example, if we were 
interested in solving the initial value problem of phase integral theory in 
the momentum representation, then all the arguments above would be 
repeated, with the roles of x and p swapped. Then the change in sign of the 
eigenvalues would be determined by the matrix Hxx, which in general is 
not definite. The Maslov index also applies to curve segments which are 
not orbits, as one often requires in quantization problems. For such 
segments, the index does not necessarily increase at caustics, even for 
kinetic-plus-potential problems in the x-representation. Further discussion 
and algorithms for computing the Maslov index can be found in refs. 22 
and 23. 

5. T H E  V A N  V L E C K  F O R M U L A  

Let us now apply time-dependent WKB theory to the initial wave 
function O0(x)= 6 ( x - x ' )  at time t =  t', as discussed in Section 2, in order 
to find a WKB expression for the propagator at a later time. We 
immediately encounter a minor problem, namely that the initial wave func- 
tion does not have the WKB form shown in Eq. (2.4), so we cannot iden- 
tify an initial amplitude and phase. The problem is easily circumvented, 
however; we simply work in momentum space, in which the initial wave 
function is 

~o(P) -- (21rh)f/z exp ( (5.1) 
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Therefore the initial amplitude and phase are Ao(p)=(2nh)-s/2 and 
So(p) = -px ' ,  and the WKB representation is exact. Working in momen- 
tum space for small times is a natural approach in the spirit of Maslov's 
theory. It is an approach which is also taken by Ozorio de Almeida/24) 

For a fixed value of x', the initial Lagrangian manifold appears as 
in Fig. 12, and we see that the failure of the WKB form in the 
x-representation is due to the fact that the initial Lagrangian manifold in 
the x-representation consists entirely of caustic points. It is, in fact, a 
perfect focus (a caustic of order f ) ,  as the wave function ~o(X)= 6 ( x - x ' )  
indicates. 

For short times, we expect the regions of the initial Lagrangian 
manifold containing small initial momenta to have evolved only a small 
amount, so that no momentum-space caustics will have developed. This is 
illustrated in Fig. 26 for the double-well oscillator. Notice that in the figure, 
the final Lagrangian manifold is almost a straight line, as was the initial 
Lagrangian manifold. This is because for short times and small initial 
momenta, the evolution is dominated by the kinetic energy, which 
generates linear transformations on phase space. This point will be 
examined more carefully in a moment. 

For longer times, we expect momentum-space caustics to develop. 
These are illustrated in Fig. 27, in which up to five momentum-space 
branches are visible. The stretching and kneading of the Lagrangian 
manifold which is evident in Fig. 27 is leading to structures which have 
been called "whorls and tendrils" by Berry et al. (t6) Actually, even for short 
times, there may be multiple branches, because initial conditions at large 

2 ~ 1 ' , , I  

1 
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-2 r 
.6 .8 1.0' ~ 1.2' ' ~11.4' ~ '1.6 

Position 

Fig. 26. The initial Lagrangian manifold x' = 1.0 at t' = 0 and its evolved image at t" = 0.2 
for the 1-dimensional double-well oscillator with potential V(x)=x 4 - x  2. Two orbits are 
shown, 
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Fig. 27. 
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The initial and final Lagrangian manifolds for the same system at t"= 2.0. Five 
orbits are shown. 

momenta  may lead to convolutions in a short time. For  example, the 
Lagrangian manifold in Fig. 26 would show arbitrarily many momentum- 
space caustics if the diagram were enlarged, because high-momentum 
particles in a sharply rising potent ial  can bounce many times in a small 
elapsed time. 

We will refer to the one branch illustrated in Fig. 26 as the "principal 
branch," which exists within bounds on momentum and time which are 
classical, i.e., of order h ~ This branch has a Maslov index in momentum 
space of x = 0, because for short times the orbits do not encounter any 
momentum-space caustics. This is shown clearly in Fig. 26. The principal 
branch also has a single-valued projection onto configuration space (except 
at t = t'), so it corresponds to a single branch in the configuration-space 
wave function as well. 

Using the WKB theory leading to Eq. (4.3), but with the replacements 
x ~ p, p ~ - x, we can immediately write down the final momentum-space 
wave function, 

1 . . ( ~ p t  1/2 

(~(p", t") = ~b (2rch) f/2 aet 

(5.2) 

where the initial amplitude and action have been taken from Eq. (5.1). In 
this equation, x '  is regarded as a fixed parameter  of the WKB problem. 

To find ~b(x", t"), which is the propagator  K(x", t"; x', t'), we simply 
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Fourier transform Eq. (5.2), using the stationary phase approximation. We 
note that the momentum-space action/~ can be written 

~(p,,, . . . .  = ~ t , p , t ' )  - x d p - H d t = R ( x " , t " ; x ' , t ' )  x ' p ' + x ' p '  (5.3) Jo rbit 
which allows the final phase to be written in configuration-space terms. We 
find 

(27rh)f/2eic~/4 d " ~p,~ 1/2 ~(~2]~ I--1/2 O(x", t " )=  ~ et det 

[i 2] l t t .  ! 
x exp R(x", t , x ,  t') - i~c (5.4) 

where e is the index of inertia of 02R/@ " @' -- - Ox"/@'. Note that the 
determinant factors can be combined to give det(@'/~x"). 

Assuming we have a kinetic-plus-potential Hamiltonian, we can 
evaluate the index of inertia explicitly for the principal branch. We simply 
expand the solution of Hamilton's equations to first order in z = t" - t', to 
get 

x" = x '  + •  ~ + 0(~  2) 
m (5.5) 

p ' = p '  + F(x', t ')z + O(r 2) 

where F(x, t) is the force, and then we eliminate p' to solve for x" as a 
function of p", treating x', t', t" as parameters. This gives 

x" = x' +P" ~ + O(r 2) (5.6) 
m 

which is the equation x ' =  x ' (p")  of the final Lagrangian manifold in the 
momentum projection. The fact that it is a straight line through O(r) 
explains the appearance of Fig. 26; to this order, it does not depend on the 
potential. From Eq. (5.6) it follows that 

0k 
- &;' 6o.-~+ 0(~ 2) (5.7) Op;' Op; Opj 

so that all the eigenvalues of O2~/~p,, @, are negative for short times. 
Therefore a = - f  for the principal branch, and we can write 

K(x", t"; x', t') - (2rcih) f/z ~, Ox" 

x e x p [ s  ] (5.8) 
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w h e r e  i f/2 m e a n s  e ~fn/4, and where ~b is now the Maslov index in configura- 
tion space relative to the principal branch, for which ~-= 0. It is also the 
count, multiplicities included, of configuration-space caustics encountered 
along an orbit, but not including the order-f  caustic at t = t'. This follows 
because any given orbit is on the principal branch for short enough elapsed 
times, when tc--0, and because afterward, the configuration space caustics 
can be counted as in our discussion of the Morse index in Section 4. The 
configuration-space caustics of the propagator are properly called conjugate 
points, because they are places where there is achieved at least a partial 
refocusing of the initially perfectly focused collection of particles. 

Equation (5.8) is the Van Vleck formula. It is exact for Hamiltonians 
which are at most a quadratic polynomial in x and p, such as the free par- 
ticle, the harmonic oscillator, a particle in a constant magnetic field, and 
the components of angular momentum, e.g., L~ = xpy - yp~, regarded as an 
evolution operator. These Hamiltonians generate linear transformations 
on phase space, so there is always at most one branch. For other 
Hamiltonians, the Van Vleck formula is only the leading term in an expan- 
sion in h, and has O(h) corrections. 

If x' is regarded as a variable, then the geometrical picture correspond- 
ing to the Van Vleck formula at t = t' is that of a foliation of phase space 
into Lagrangian manifolds as shown in Fig. 16, representing the identity 
canonical transformation. At later time t = t", the foliation is the image of 
that in Fig. 16 under the flow; now the canonical transformation is that 
taking final coordinates (x", p") into initial coordinates (x', p'). This is a 
time-dependent canonical transformation, for which the Fl-type generating 
function is Hamilton's principal function R(x",  t"; x', t'), with the final 
variables considered "old" and the initial ones considered "new." In quan- 
tum mechanics, this canonical transformation corresponds to the unitary 
change of basis, taking one from the complete set of continuous states Ix" ) 
at the final time into the evolved images of the initial states U(t", t ' ) i x ' ) .  
Of course, the propagator is just the component matrix of this unitary 
transformation, with continuous indices. 

6. CONCLUSIONS 

This survey of the geometrical structure of the Van Vleck formula has 
served several purposes. It has provided an introduction to Maslov's 
theory, which is particularly elegant in the case of time-dependent 
problems; it has clarified the relationship between the Van Vleck formula 
and phase space geometry, which is not only necessary for a proper under- 
standing of the Van Vleck formula, but also for exploring such questions 



Van Vleck Formula 49 

as its long-time limitations; and it has provided a necessary introduction to 
the geometrical structure of the Gutzwiller trace formula. The latter subject 
is developed in considerable detail in ref. 7, in which it is shown how the 
Gutzwiller trace formula is obtained by projecting one Lagrangian 
manifold onto another in a doubled phase space, and in which numerous 
other geometrical features of trace formulas are explored. 
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